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ABSTRACT: The vision towards 6G communication networks demands higher transmission 
rates, massive amounts of data processing, and low-latency communication. Orthogonal 
Frequency Division Modulation (OFDM) has been adopted in the current 5G networks and has 
become one of the potential candidates for the future 6G and beyond communication systems. 
Although OFDM offers many benefits including high spectrum efficiency and high robustness 
against the multipath fading channels, it has major challenges such as frequency offset and high 
Peak-to-Average Power Ratio (PAPR). In order to deal with the increasingly complex 
communication network, Machine Learning (ML) has been increasingly utilised to create 
intelligent and more efficient communication network. The role of ML in dealing with 
frequency offset and high PAPR is discussed in this paper. In addition, ML techniques may be 
utilized for channel estimation, M2M networks, and biomedical applications. Finally, this 
paper discusses the challenges and benefits of incorporating ML into OFDM-based 
communication systems. 
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1. Introduction 

The fifth generation (5G) of communication has revolutionized the relationship between 
technology, individuals, and society, which leads to the new philosophy of Society 5.0 [1]. At 
the same time, the cyber-physical social system (CPSS) concept emerges, where everything is 
connected and data-driven [2]. In CPSS, there are three types of communication: humans to 
humans, humans and machines, and machines to machines (M2M) [3]. In an M2M network, 
sensors are strategically positioned throughout the environment, resulting in enormous data 
communication where processing data at high data rates becomes a challenging task. Intelligent 
and efficient methods are required to satisfy the standards of the future communication 
network. 

Existing 5G technologies are unable to handle the massive amounts of data that must 
be transmitted in the future. As a result, researchers have begun developing the sixth generation 
(6G) of communication technologies. The following characteristics are desired in the 6G and 
beyond networks [4]: intelligent, high energy efficiency, and always-on global coverage. The 
data rate and end-to-end latency can be up to 1 Tb/s and 1 ms, respectively. 6G and beyond 
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communication systems are often considered green communication systems due to the 
utilization of low-power devices [5]. OFDM has been proposed as the modulation waveform 
for 6G and beyond networks due to its flexibility in merging with other technologies [6,7]. 
In OFDM-based communication systems, the use of artificial intelligence techniques such as 
machine learning (ML) and deep learning (DL) is unavoidable. It has been demonstrated in the 
literature that ML may increase system performance when compared to a conventional system. 
As a result, in this paper, we will examine the role of ML in OFDM-based communication 
systems. 

The rest of this paper will be structured as follows. Section 2 will briefly discuss the 
OFDM-based communication systems and their challenges. Section 3 presents the impacts of 
utilizing ML in OFDM-based communications. Section 4 presents the challenges in 
implementing ML in OFDM-based communications. Finally, a conclusion is presented in 
Section 5. 

2. OFDM-based Communication Systems and Its Challenges 

The fundamental principle of OFDM is to divide a stream of high-rate data into many parallel 
low-rate data streams, which are mapped to a number of orthogonal subcarriers. The spectrums 
of the OFDM subcarriers overlap with each other without introducing interference. 

Consider the transmitter part of an OFDM system as illustrated in Fig. 1, where the total 
bandwidth, W, is divided into N subcarriers. The modulated symbol for the kth subcarrier is 
represented as bk, with the symbol interval Ts. The spectrums of the OFDM subcarriers overlap 
with each other without introducing interference. A Digital OFDM system can be implemented 
by employing inverse Discrete Fourier Transform (IDFT) at the transmitter and DFT at the 
receiver. 

 
 

 
Figure 1. OFDM system. 

 
 

The bit stream is passed to the modulation block (M-QAM or M-PSK, where M is the 
modulation order) and subsequently passed to the IDFT block, i.e., to form the OFDM signal. 
The analog baseband of the OFDM transmitted signal can be written as 
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Guard interval (GI) may be appended to the OFDM signal to eliminate intersymbol interference 
(ISI), resulting in a longer sequence 𝑥𝑥�𝑘𝑘. GI can be in the form of either a cyclic prefix or zero 
padding. The OFDM signal is then transmitted over the communication channel and received 
by the receiver. The received signal is expressed by 
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𝑦𝑦𝑘𝑘 =  𝑥𝑥�𝑘𝑘 ∗ ℎ𝑘𝑘 + 𝑛𝑛𝑘𝑘     (2) 
 
where kh  is the channel impulse response (CIR) coefficients, kn  is the additive noise, and * 
denotes convolution. After the GI is removed, the received OFDM signal is passed to the DFT 
and demodulation blocks, respectively. In general, OFDM-based communication systems have 
two major challenges: frequency offset and a high peak-to-average power ratio in the 
transmitted OFDM signal.  

2.1. Frequency Offset 

Due to the orthogonality between the OFDM subcarriers, the receiver can demodulate the 
transmitted data without introducing inter-carrier interference (ICI). However, frequency 
mismatch (frequency offset) between the transmitter and receiver causes the carriers to become 
no longer orthogonal [8]. Frequency offset results in system performance degradation in terms 
of signal-to-noise ratio (SNR) and hence bit error rate (BER). 

The strict orthogonality and synchronization in the OFDM system will restrict the 
capability of M2M communication where sporadic traffic is generated by the Internet of Things 
(IoT) or other devices in the M2M network. This type of device should not be forced to be 
integrated into the strict synchronization procedure. Ideally, these devices should wake 
occasionally, and then transmit their messages in an instance without strict synchronization. 
Future communications systems, such as 6G communication systems, are envisioned to 
connect devices over the air, underwater, and in space. Hence, more efficient techniques in 
channel estimation to minimize frequency offset are required.  

2.2. High Peak to Average Power Ratio 

Another major challenge in OFDM-based communication is the large PAPR in the transmitted 
signal. PAPR is an essential performance parameter of wireless communication systems as it 
reflects the cost and energy efficiency of the hardware requirements. Power efficiency is 
always an important factor in mobile communication networks to keep the total operational 
cost low. High PAPR of the transmitted OFDM signal has been one of the major drawbacks in 
OFDM system design and implementation. The large peaks resulting from high PAPR require 
additional back-off to prevent nonlinearity. Nonlinearity will create intermodulation between 
carriers and introduce signal distortion, thereby deteriorating the BER. The additional back-off 
means a larger dynamic range. This type of HPA is costly and consumes more power for 
portable systems, such as IoT devices. This is a major impediment to implementing OFDM for 
portable appliances. With the significant increase of utilised IoT devices in various systems, 
reducing the PAPR of the OFDM transmitted signal has been a popular topic in wireless 
communication. 

Various conventional methods have been proposed to reduce the PAPR in OFDM 
communication systems, such as clipping [9], tone reservation [10,11], and pulse shaping [12]. 
However, these techniques have various limitations in minimizing the PAPR. 
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3. Machine Learning in OFDM based Communications 

Data-intensive applications over low-power devices will be the future of the fully connected 
world. In CPSS, data and humans become the focus of the technology where data will be 
transmitted and collected from machines and devices and humans. Technology will create a 
connected world where the collected data is used to solve society's problems. ML-OFDM has 
been proposed as an intelligent and efficient solution to various issues in communication 
systems. 

3.1. ML for Channel Estimation 

The use of deep learning (DL) has been proposed to be used at the OFDM receiver [13]. 
Training datasets are created offline under various environmental conditions where the 
received signals are recorded and used as training data for the system to learn. Furthermore, 
ML can be used to estimate channel impulse response (CIR) coefficients for equalization 
purposes [14]. In the future, communication using the OFDM signal will be transmitted over 
the air, space, or underwater channels to create a fully connected world. Underwater channel 
characteristics are different from radio frequency (RF) as underwater channels have different 
scenarios compared to air or space. Underwater acoustic (UWA) communications are used for 
surveillance systems, sensors, or unmanned vehicles underwater [1]. The underwater 
environment is complex, yet reliability and a high data rate are required for reliable 
communications. OFDM-ML can improve the BER performance in UWA compared to the 
existing optimization method [15]. 

3.2. ML for Frequency Offset Estimation 

As discussed in [16], support vector machines (SVMs) have been employed to estimate the 
frequency offset in the demodulation process as well. It was shown that the system with SVM 
could achieve relatively the same BER as the maximum likelihood (ML) demodulator. Symbol 
timing offset, in addition to carrier offset, can produce phase distortion and intersymbol 
interference (ISI). SVM was proposed by the authors of [17] to tackle the symbol timing offset. 
The proposed method was demonstrated to be capable of estimating the timing offset, albeit 
the performance is dependent on the number of pilots.  

 
3.3. ML for PAPR Reduction 

An autoencoder of deep learning, called the PAPR reducing network (PRNet), was used as 
both a modulator and a demodulator to both reduce PAPR and achieve an undeteriotating BER 
in [18]. In particular, the loss function of PRNet was designed to meet the minimum PAPR as 
well as undeteriotating BER. Simulation results showed that PRNet outperforms traditional 
clipping and partial transmit scheme (PTS) methods. To efficiently reduce the PAPR, a low-
complexity extreme machine learning (ELM)-based tone reservation was proposed in [19]. 
Compared to PRNet, the PAPR of ELM-based tone reservation is higher due to its low 
complexity. However, it can achieve a better symbol error rate (SER). [20] also proposed 
another DL-based tone reservation technique. Furthermore, ML techniques have also been used 
to lower out-of-band (OOB) emissions. A DL-based technique in terms of autoencoder has 
been employed for PAPR reduction [21]. A combination of extended SLM and autoencoder 
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has also been proposed for reducing PAPR in DC-biased optical OFDM systems [22]. In [23], 
autoencoders together with orthogonal precoding were used to achieve both low PAPR and 
OOB emission. In [24], ML was used to improve the performance of clipping and filtering to 
reduce the PAPR of the OFDM signals.  
 
3.4. ML for M2M Networks 

Future communication systems should have flexibility, not strict orthogonality and 
synchronization, where different applications can be addressed by a single solution with 
different parameter settings instead of using multiple solutions, able to control the interference 
among multiple users and maintain the relationship with other technologies [25-27]. 

Implementing a large number of IoT devices in an M2M network requires an efficient 
and effective infrastructure to detect failure. Phenomena called "sleeping cells" can reduce the 
performance of the cell without triggering any warning and can be undetected by the system. 
In [28], the authors proposed using an ML framework to detect this type of failure efficiently. 

 
3.5. ML for Biomedical 

6G technology has been envisioned to support the Internet of BioNano-Things (IoBNT) to 
provide reliable health monitoring and diagnostic systems with nano-bio sensors, machine 
learning, and molecular communications (MC) concepts. In [29], the authors discussed the 
visibility of diagnostic systems based on biomarker detection using molecular communication 
principles with an ML algorithm.  

4. Challenges in Machine Learning in OFDM based Communications 
 
ML in OFDM-based communication shows potential to improve various performances and is 
effective in reducing inefficiencies in order to satisfy the standards of future communication 
systems. However, implementing ML is complex, and many of the current approaches rely on 
dynamic training models. Producing high-quality training models requires high computational 
cost, and different parameters in the training models will produce different results. Training 
models require a large number of datasets, and sensitive data may be uploaded to the cloud 
server. Sensitive data may be stored in a central location and may be accessed inappropriately. 
This may lead to privacy and security issues. In time, the datasets may rapidly increase in size, 
and this will affect the speed of the processing, which will cause an issue for M2M networks 
where low latency is required. Most current ML algorithms and training models mainly use 
centralized servers, where super powerful servers are a necessity. Servers with super high 
computational speed can be costly, and it is one of the major restrictions for researchers and 
small-medium businesses.   
 
5. Conclusion 
 
For future 6G and beyond communication systems, embedding ML in OFDM-based 
communication will improve the performance and efficiency. ML has been used to solve some 
issues in OFDM-based communication systems, including frequency offset estimation, PAPR 
reduction, and channel estimation. It is also suitable for M2M networks and biomedical 
engineering. However, there are challenges such as computational complexity, computational 
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cost, distribution, security, privacy, and hardware cost in implementing ML in the 
communication system that need to be tackled.  
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